AIM Banner




AIM 2020 SENIOR REVIEW PROPOSAL REFERENCES

Alexander, M. J., S. D. Eckermann, D. Broutman, and J. Ma, (2009), Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite, Geophys. Res. Lett., 36, L12816, https://doi.org/10.1029/2009GL038587.

Alexander, M. J. and A. W. Grimsdell (2013), Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on general circulation, J. Geophys. Res., 118, 1-11, https://doi.org/ 10.1002/2013JD020526.

Alexander, M. J., D. A. Ortland, A. W. Grimsdell, J.E. Kim (2017), Sensitivity of gravity wave flues to interannual variations in tropical convection and zonal wind, J. Atmos. Sci., https://doi.org/10.1175/JAS-D-17-0044.1.

Azeem, I., J. Yue, L. Hoffmann, S. D. Miller, W. C. Straka III, and G. Crowley (2015), Multi-sensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere, Geophys. Res. Lett, 24, 7874-7880, https://doi.org/: 10.1002/2015GL065903.

Bailey, S.M., Thurairajah, B., Randall, C.E., Holt, L., Siskind, D.E., Harvey, V.L., et al. (2014), A multi tracer analysis of thermosphere to stratosphere descent triggered by the 2013 stratospheric sudden warming, Geophys. Res. Lett., 41, 5216–5222, https://doi.org/10.1002/2014GL059860.

Bailey S. M., G. E. Thomas, M. E. Hervig, J.D. Lumpe, C. E. Randall, J. N. Carstens, B. Thurairajah, D. W. Rusch, J. M. Russell, and L.L. Gordley (2015), Comparing nadir and limb viewing observations of polar mesospheric clouds: The effect of the assumed particle size distribution, J. Atmos. Solar-Terr. Phys., https://doi.org/10.1016/j.jastp.2015.02.007.

Bardeen, C. G., O. B. Toon, E. J. Jensen, D. R. Marsh, and V. L. Harvey (2008), Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere, J. Geophys. Res., 113, D17202, https://doi.org/10.1029/2007JD009515.

Baumgaertner, A. J. and A. J. Mcdonald (2007), A gravity wave climatology for Antarctic complied from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations, J. Geophys. Res. Atmosphere, 112(D5), https://doi.org/10.1029/2006JD007504.

Becker, E. and S.L. Vadas (2018), Secondary gravity waves in the winter mesosphere: Results from a high-resolution, gravity-wave resolving global circulation model, J. Geophys. Res. Atmospheres, 123, https://doi.org/10.1002/2017JD027460.

Benze, et al. (2009), Comparison of polar mesospheric cloud measurements from the cloud imaging and particle size experiment and the solar backscatter ultraviolet instrument in 2007, J. Atmos. Sol. Terr. Phys., https://doi.org/10.1016/j.jastp.2008.07.014.

Benze, S., C. E. Randall, M. T. DeLand, G. E. Thomas, S. M. Bailey, J. M. Russell III and A. W. Merkel (2011), Evaluation of AIM CIPS measurements of Polar Mesospheric Clouds by comparison with SBUV data, J. Atmos. Solar-Terr. Phys., 73, 2065-2072, https://doi.org/10.1016/j.jastp.2011.02.003.

Benze, et al. (2012), On the onset of polar mesospheric cloud seasons as observed by SBUV, J. Geophys. Res., 117, D07104, https://doi.org/10.1029/2011JD017350.

Benze, S., J. Gumbel, C. E. Randall. K. Hultgren, J. D. Lumpe, and G. Baumgarten (2018), Making limb and nadir measurements comparable: a common volume study of PMC brightness observed by Odin OSIRIS and AIM CIPS, J. Atmos. Sol. Terr. Phys., https://doi.org/10.1016/j.jastp.2017.11.007.

Berger, U., and Lübken, F.‐J. ( 2015), Trends in mesospheric ice layers in the Northern Hemisphere during 1961–2013, J. Geophys. Res. Atmos., 120, 11,277– 11,298, https://doi.org/10.1002/2015JD023355.

Broman, L. S. Benze, J. Gumbel, O. M. Christensen, C. E. Randall (2019), Common volume satellite studies of polar mesospheric clouds with Odin/OSIRIS tomography and AIM/CIPS nadir imaging, Atmos. Chem. Phys., https://doi.org/10.5194/acp-19-12455-2019.

Chu, X., C. Yamashita, P. J. Espy, G. J. Nott, E. J. Jensen, H.‐L. Liu, W. Huang, and J. P. Thayer (2009), Responses of polar mesospheric cloud brightness to stratospheric gravity waves at the South Pole and Rothera, Antarctica, J. Atmos. Sol.‐Terr. Phys., 71, 434– 445, https://doi.org/10.1016/j.jastp.2008.10.002.

Calvo, N., R. R. Garcia, W. J. Randel, and D. R. Marsh (2010), Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events, J. Atmos. Sci., 67, 2331–2340, https://doi.org/10.1175/JAS-D-16-0226.1.

Dalin P, Kirkwood S, Andersen H, Hansen O, Pertsev N, Romejko V., (2006), Comparison of long-term Moscow and Danish NLC observations: statistical results, Ann Geophys, 24, 2841–2849, https://doi.org/10.5194/angeo-24-2841-2006.

Dalin, P., Perminov, V., Pertsev, N., & Romejko, V. (2020), Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds, J. Geophys. Res.: Atmospheres, 125, e2019JD030814. https://doi.org/10.1029/2019JD030814.

de Wit, R.J., R.E. Hibbins, P.J. Espy, & E.A. Hennum (2015), Coupling in the middle atmosphere related to the 2013 major sudden stratospheric warming, Ann. Geophys., 33, 309�319, https://doi.org/10.5194/angeo-33-309-2015.

DeLand, M. T., Shettle, E. P., Thomas, G. E., and Olivero, J. J. ( 2003), Solar backscattered ultraviolet (SBUV) observations of polar mesospheric clouds (PMCs) over two solar cycles, J. Geophys. Res., 108, 8445, https://doi.org/10.1029/2002JD002398.

DeLand, M. T. and Thomas, G. E. (2015), Updated PMC trends derived from SBUV data. J. Geophys. Res. Atmos., 120: 2140– 2166. https://doi.org/10.1002/2014JD022253.

DeLand, M. T., & Thomas, G. E. (2019), Extending the SBUV polar mesospheric cloud data record with the OMPS NP, Atmospheric Chemistry and Physics, 19, 7913-7923, https://doi.org/10.5194/acp-19-7913-2019.

Dubietis, A., P. Dalin, R. Balciunas, and K. Cernis (2010), Observations of noctilucent clouds from Lithuania, J. Atmos. Sol. Terr. Phys., 72(14-15), 1090–1099, https://doi.org/10.1016/j.jastp.2010.07.004.

Duck, T. J., J. A. Whiteway, A. Carswell (2001), The gravity wave-Arctic stratospheric vortex interaction, J. Atmos. Sci., 58, 3581�3596, https://doi.org/10.1175/1520-0469(2001)058<3581:TGWASV>2.0.CO;2 .

Ehard, B. et al. (2017), Horizontal propagation of large-amplitude mountain waves into the polar night jet, J. Geophy. Res. Atmos., 122, https://doi.org/10.1002/2016JD025621.

Emmert, J. T., M. H. Stevens, P. F. Bernath, D. P. Drob, and C. D. Boone (2012), Observations of increasing carbon dioxide concentration in Earth’s thermosphere, Nat. Geosci.,5, 868–871, https://doi.org/10.1038/NGEO1626.

England, S. L., K. R. Greer, S. C. Solomon, R. W. Eastes, W. E. McClintock, A. G. Burns (2020), Observation of thermospheric gravity waves in the southern hemisphere with GOLD, J. Geophys. Res. Space Physics, https://doi.org/10.1029/2019JA027405.

Forbes, J. M., Hagan, M. E., Miyahara, S., Vial, F., Manson, A. H., Meek, C. E., and Portnyagin, Y. I. (1995), Quasi 16‐day oscillation in the mesosphere and lower thermosphere, J. Geophys. Res., 100( D5), 9149– 9163, https://doi.org/10.1029/94JD02157.

France, J.A., Randall, C.E., Lieberman, R.S., Harvey, V.L., Eckermann, S.D., Siskind, D.E., Lumpe, J.D., Bailey, S.M., Carstens, J.N., & Russell, J.M. III (2018), Local and remote planetary wave effects on polar mesospheric clouds in the Northern Hemisphere in 2014, J. Geophys. Res. Atmos., 123, 5149� 5162. https://doi.org/10.1029/2017JD028224.

Fritts, D. C., and T. S. Lund (2011), Gravity wave influences in the thermosphere and ionosphere: Observations and recent modeling, in Aeronomy of the Earth’s Atmosphere and Ionosphere, vol. 2, edited by M. Abdu and D. Pancheva, pp. 109–130, Springer, Netherlands, https://doi.org/10.1007/978-94-007-0326-1_8.

Fritts, D. C., Miller, A. D., Kjellstrand, C. B., Geach, C., Williams, B. P., Kaifler, B., et al. (2019), PMC Turbo: Studying gravity wave and instability dynamics in the summer mesosphere using polar mesospheric cloud imaging and profiling from a stratospheric balloon, J. Geophys. Res. Atmospheres, 124, https://doi.org/10.1029/2019JD030298.

Funke, et al. (2017), HEPPA-II model-measurement inter comparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009, Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017.

Gan Q. et al. (2020), First synoptic observations of geomagnetic storm effects on the Global-scale OI 135.6-nm Dayglow in the thermosphere by the GOLD mission, Geophys. Res. Lett., https://doi.org/10.1029/2019GL085400.

Garcia, R. R. (1989), Dynamics, radiation, and photochemistry in the mesosphere: Implications for the formation of noctilucent clouds, J. Geophys. Res., 94, 14605-14,615, https://doi.org/10.1029/JD094iD12p14605.

Garcia, R. R., M. López-Puertas, B. Funke, D. R. Marsh, D. E. Kinnison, A. K. Smith, and F. González-Galindo (2014), On the distribution of CO2 and CO in the mesosphere and lower thermosphere, J. Geophys. Res. Atmos., 119, 5700–5718, https://doi.org/10.1002/2013JD021208.

Garcia, R. R., Yue, J., & Russell, J. M. (2019), Middle atmosphere temperature trends in the twentieth and twenty-first centuries simulated with the Whole Atmosphere Community Climate Model (WACCM), J. Geophys. Res.: Space Physics, 124(10), 7984� 7993, https://doi.org/10.1029/2019JA026909.

García-Comas, M., B. Funke, A. Gardini, M. López-Puertas, A. Jurado-Navarro, T. von Clarmann, G. Stiller, M. Kiefer, C. D. Boone, T. Leblanc, B. T. Marshall, M. J. Schwartz, and P. E. Sheese (2014), MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements, Atmos. Meas. Tech., 7, 3633-3651, https://doi.org/10.5194/amt-7-3633-2014.

García-Comas, M., López-Puertas, M., Funke, B., Jurado-Navarro, Á. A., Gardini, A., Stiller, G. P., Clarmann, T. v., and Höpfner, M., (2016), Measurements of Global Distributions of Polar Mesospheric Clouds during 2005–2012 by MIPAS/Envisat, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-116.

Gelaro R. et al., (2017) The Modern Era Retrospective Analysis for Research and Applications- Version 2, J. Clim, 30, 5419-5454, https://doi.org/10.1175/JCLI-D-16-0758.1.

Gerding, M., J. Höffner, P. Hoffmann, M. Kopp, and F. ‐J. Lübken (2013), Noctilucent cloud variability and mean parameters from 15 years of lidar observations at a mid‐latitude site (54°N, 12°E), J. Geophys. Res. Atmos., 118, 317– 328, https://doi.org/10.1029/2012JD018319.

Gerding, M., J. Zöllner, M. Zecha, K. Baumgarten, J. Höffner, G. Stober, and F.-J. Lübken (2018), Simultaneous observations of NLCs and MSEs at midlatitudes: implications for formation and advection of ice particles, Atmos. Chem. Phys., 18, 15569–15580, https://doi.org/10.5194/acp-18-15569-2018.

Gerrard, A. J., T. J. Kane, S. D. Eckermann, and J. P. Thayer (2004), Gravity waves and mesospheric clouds in the summer middle atmosphere: A comparison of lidar measurements and ray modeling of gravity waves over Sondrestrom, Greenland, J. Geophys. Res., 109, D10103, https://doi.org/10.1029/2002JD002783.

Gordley, L.L., et al., (2009), The Solar Occultation For Ice Experiment (SOFIE), J. Atmos. Solar-Terr. Phys., 71, http://dx.doi.org/10.1016/j.jastp.2008.07.012.

Gómez-Ramírez, D., J. W. C. McNabb, J. M. Russell III, M. E. Hervig, L. E. Deaver, G. Paxton, and P. F. Bernath (2013), Empirical correction of thermal responses in the Solar Occultation for Ice Experiment nitric oxide measurements and initial data validation results, Appl. Optics, Vol. 52, Issue 13, pp. 2950-2959, http://dx.doi.org/10.1364/AO.52.002950.

Greer, K. R., England, S. L., Becker, E., Rusch, D., & Eastes, R. (2018), Modeled gravity wave-like perturbations in the brightness of far ultraviolet emissions for the GOLD mission, J. Geophys. Res.: Space Physics, 123, 5821� 5830. https://doi.org/10.1029/2018JA025501.

Gumbel, J. et al. (2020), The MATS satellite mission – gravity wave studies by Mesospheric Airglow/Aerosol Tomography and Spectroscopy, Atmos. Chem. Phys., 20, 431–455, https://doi.org/10.5194/acp-20-431-2020.

Hart, V.P, M.J. Taylor, T.E. Doyle, Y. Zhao, P.-D. Pautet, B.L. Carruth, D.W. Rusch and, J.M. Russell, III (2018). Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery, J. Geophys. Res, Space Physics., 123, 955–973. https://doi.org/10.1002/2017JA024481.

Hartogh, P., G. R. Sonnemann, M. Grygalashvyly, L. Song, U. Berger, and F.‐J. Lübken (2010), Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA, J. Geophys. Res., 115, D00I17, https://doi.org/10.1029/2009JD012364.

Hendrickx, K., L. Megner, D. R. Marsh, and C. Smith-Johnsen (2018), Production and transport mechanisms of NO in observations and models, Atmos. Chem. Phys., https://doi.org/10.5194/acp-18-9075-2018.

Hervig, M., and D. Siskind (2006), Decadal and inter‐hemispheric variability in polar mesospheric clouds, water vapor, and temperature, J. Atmos. Sol. Terr. Phys., https://doi.org/10.1016/j.jastp.2005.08.010.


Hervig, M. E., L. L. Gordley, L. E. Deaver, D. E. Siskind, M. H. Stevens, J. M. Russell III, S. M. Bailey, L. Megner, and C. G. Bardeen (2009),First Satellite Observations of Meteoric Smoke in the Upper Atmosphere, Geophys. Res. Letters, http://dx.doi.org/10.1029/2009GL039737.


Hervig, M. E., and L. L. Gordley (2010), The temperature, shape, and phase of mesospheric ice from SOFIE observations, J. Geophys. Res., 115, D15208, http://dx.doi.org/10.1029/2010JD013918.

Hervig, M. E., M. Rapp, R. Latteck, and L. L. Gordley (2010), Observations of mesospheric ice particles from the ALWIN radar and SOFIE, J. Atmos. Solar-Terr. Phys., http://dx.doi.org/10.1016/j.jastp.2010.08.002.

Hervig, M. E., L. E. Deaver, C. G. Bardeen, J. M. Russell, S. M. Bailey, and L. L. Gordley (2012), The content and composition of meteoric smoke in mesospheric ice particles from SOFIE observations, J. Atmos. Solar-Terr. Phys., http://dx.doi.org/10.1016/j.jastp.2012.04.005.

Hervig, M. E., and Stevens, M. H. (2014), Interpreting the 35 year SBUV PMC record with SOFIE observations, J. Geophys. Res. Atmos., 119, 12,689– 12,705, http://dx.doi.org/10.1002/2014JD021923.

Hervig, M. E., U. Berger, D. E. Siskind (2016a), Decadal variability in PMCs and implications for changing temperature and water vapor in the upper mesosphere, J. Geophys. Res., 121, 2383-2392, http://dx.doi.org/10.1002/2015JD024439.

Hervig, M. E., M. Gerding, M. H. Stevens, R. Stockwell, S. M. Bailey, J. M. Russell, G. Stober (2016b), Mid-latitude mesospheric clouds and their environment from SOFIE observations, J. Atmos. Solar-Terr. Phys., http://dx.doi.org/10.1016/j.jastp.2016.09.004.

Hervig, M. E., C. G. Bardeen, D. E. Siskind, M. J. Mills, R. Stockwell, (2017a), Meteoric smoke and H2SO4 aerosols in the upper stratosphere and mesosphere, Geophys. Res. Letters, 44, http://dx.doi.org/10.1002/2016GL072049.

Hervig, M. E., Brooke, J. S. A., Feng, W., Bardeen, C. G., Plane, J. M. C. (2017b), Constraints on meteoric smoke composition and meteoric influx using SOFIE observations with models, J. Geophys. Res. Atmos., 122, http://dx.doi.org/10.1002/2017JD027657.

Hervig, M. E., B. T. Marshall, S. M. Bailey, D. E. Siskind, J. M. Rusell III, C. Bardeen, K. A. Walker, and B. Funke (2019a), Validation of SOFIE nitric oxide measurements, Atmos. Meas. Tech., https://doi.org/10.5194/amt-12-3111-2019.

Hervig, M. E., Siskind, D. E., Bailey, S. M., Merkel, A. W., DeLand, M. T., & Russell, J. M., III (2019b). The missing solar cycle response of the polar summer mesosphere. Geophys. Res. Lett,, 46, https://doi.org/10.1029/2019GL083485.

Hines, C. O., (1960), internal gravity waves at ionospheric heights, Can. J. Phys., 38(11), 1441-1481, https://doi.org/10.1139/p60-150.

Hoffmann, L., X. Xue, M. J. Alexander (2013), A global view of stratospheric gravity wave hotspots located with Atmosperic Infrared Sounder observations, J. Geophys. Res. Atmos, 118, 416-434, https://doi.org/10.1029/2012JD018658.

Huang, K. M., Liu, A. Z., Zhang, S. D., Yi, F., Huang, C. M., Gan, Q., Gong, Y., Zhang, Y. H., and Wang, R., (2015), Observational evidence of quasi-27-day oscillation propagating from the lower atmosphere to the mesosphere over 20° N, Ann. Geophys., 33, 1321–1330, https://doi.org/10.5194/angeo-33-1321-2015.

Immel, T.J., England, S.L., Mende, S.B. et al. (2018), The Ionospheric Connection Explorer Mission: Mission Goals and Design. Space Sci Rev 214, 13 (2018). https://doi.org/10.1007/s11214-017-0449-2.

Karlsson, B., C.E. Randall, S. Benze, M. Mills, V.L. Harvey, S.M. Bailey, & J.M. Russell III (2009), Intra-seasonal variability of polar mesospheric clouds due to inter-hemispheric coupling, Geophys. Res. Lett., 36(20), http://dx.doi.org/10.1029/2009GL040348.

Karlsson, B., C.E. Randall, T.G. Shepherd, V.L. Harvey, J. Lumpe, K. Nielsen, S.M. Bailey, M. Hervig, & J.M. Russell III (2011), On the seasonal onset of polar mesospheric clouds and the breakdown of the stratospheric polar vortex in the Southern Hemisphere, J. Geophys. Res. Atmos., 116(D18), http://dx.doi.org/10.1029/2011JD015989.

Karlsson, B., and M. Kuilman (2018), On how the middle atmospheric residual circulation responds to the solar cycle close to the solstices, J. Clim., 31, http://dx.doi.org/10.1175/JCLID-17-0202.1.

Kirkwood S, Dalin P, Rechou A., (2008), Noctilucent clouds observed from the UK and Denmark - trends and variations over 43 years, Ann. Geophys., 26, https://doi.org/10.5194/angeo-26-1243-2008.

Kirkwood, S., M. Hervig, E. Belova, and A. Osepian (2010), Quantitative Relation between PMSE and Ice Mass Density, Ann. Geophys., 28, 1333-1343, http://dx.doi.org/10.5194/angeo-28-1333-2010.

Khosrawi, F, et al. (2018), The SPARC water vapour assessment II:
Comparison of stratospheric and lower mesospheric water vapour time series observed from satellites, Atmos. Meas. Tech. Discuss., in review, http://dx.doi.org/10.5194/amt-2018-33.

Körnich, H., and E. Becker (2010), A simple model for the interhemispheric coupling of the middle atmosphere circulation, Adv. Sp. Res., 45 (5), 661-668, https://doi.org/10.1002/2017JD026604.

Laeng, A., J. Plieninger, T. von Clarmann, U. Grabowski, G. Stiller, N. Glatthor, F. Haenel, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, L. Deaver, A. Engel, M. Hervig, I. Levin, M. McHugh, S. Noel, G. Toon, K. Walker (2015), Validation of MIPAS IMK/IAA methane version V5R_CH4_222 profiles, Remote Sensing of Environment, http://dx.doi.org/10.5194/amtd-8-5565-2015.

Li, J., Wang, W., Lu, J., Yuan, T., Yue, J., Liu, X., et al. (2018), On the responses of mesosphere and lower thermosphere temperatures to geomagnetic storms at low and middle latitudes, Geophys. Res. Lett., 45, 10,128–10,137, https://doi.org/ 10.1029/2018GL078968.

Li, J., Wang, W., Lu, J., Yue, J., Burns, A. G., Yuan, T., et al. (2019), A modeling study of the responses of mesosphere and lower thermosphere winds to geomagnetic storms at middle latitudes. J. Geophys. Res. Space Physics, 124, 3666-3680, https:// doi.org/10.1029/2019JA026533.


Li, Q. et al., (2010), Microphysical parameters of mesospheric ice clouds derived from calibrated observations of polar mesosphere summer echoes at Bragg wavelengths of 2.8m and 30 cm, J. Geophys. Res.,115, D00113, http://dx.doi.org/10.1029/2009JD012271.


Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K. (2016), On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause, J. Geophys. Res. Atmos., 121, 4518– 4537, http://dx.doi.org/10.1002/2015JD024401.

Liu, H.‐L., McInerney, J. M., Santos, S., Lauritzen, P. H., Taylor, M. A., and Pedatella, N. M. (2014), Gravity waves simulated by high‐resolution Whole Atmosphere Community Climate Model, Geophys. Res. Lett., 41, 9106– 9112, http://dx.doi.org/10.1002/2014GL062468.

Liu, H.-L. (2016), Variability and predictability of the space environment as related to lower atmosphere forcing, Space weather, 14, 634-658, https://doi.org/10.1002/2016SW001450.

Liu, X., J., Yue, J., Xu, R. R., Garcia, J. M., Russell, III, M., Mlynczak, D. L., Wu, and T., Nakamura (2017), Variations of global gravity waves derived from 14 years of SABER temperature observations, J. Geophys. Res. Atmos., 122, 6231-6249, https://doi.org/10.1002/2017JD026604.

Liu, X., Yue, J., Wang, W., Xu, J., Zhang, Y., Li, J., et al. (2018), Responses of lower thermospheric temperature to the 2013 St. Patrick's Day geomagnetic storm, Geophys. Ress Lett., 45, https://doi.org/10.1029/2018GL078039.

Liu, X., Xu, J., Yue, J., Vadas, S. L., & Becker, E. (2019), Orographic primary and secondary gravity waves in the middle atmosphere from 16-year SABER observations, Geophysical Research Letters, 46, 4512�4522. https:// doi.org/10.1029/2019GL082256.

Lumpe, J.D., S.M. Bailey, J.N. Carstens, C.E. Randall, D.W. Rusch, G.E. Thomas, K. Nielsen, C. Jeppesen, W.E. McClintock, A.W. Merkel, L. Riesberg, B. Templeman, G. Baumgarten, J.M. Russell, IlI (2013), Retrieval of polar mesospheric cloud properties from CIPS: algorithm description, error analysis and cloud detection sensitivity, J. Atmos. Solar-Terr. Phys, 104, 167-196, http://dx.doi.org/10.1016/j.jastp.2013.06.007.

Lübken, F.‐J., Berger, U., and Baumgarten, G. ( 2009), Stratospheric and solar cycle effects on long‐term variability of mesospheric ice clouds, J. Geophys. Res., 114, D00I06, http://dx.doi.org/10.1029/2009JD012377.

L�bken, F.-J., Berger, U., & Baumgarten, G. ( 2018), On the anthropogenic impact on long-term evolution of noctilucent clouds, Geophysical Research Letters, 45, 6681� 6689. https://doi.org/10.1029/2018GL077719.

Malaspina, D. M. and L. B. Wilson III (2016), A database of interplanetary and interstellar dust detected by the Wind spacecraft, J. Geophys. Res. Space Physics, 121, 9369–9377, http://dx.doi.org/10.1002/2016JA023209.

McClintock, W., D. W. Rusch, G. E. Thomas, A. W. Merkel, M. R. Lankton,V. A. Drake, S. M. Bailey, and J. M. Russell III (2009), The Cloud Imaging and Particle Size Experiment On The Aeronomy Of Ice In The Mesosphere Mission: Instrument Concept,Design, Calibration, And On-Orbit Performance, J. Atmos. Solar-Terr. Phys., 71, http://dx.doi.org/10.1016/j.jastp.2008.10.011.

McCormack, J. P., et al., (2017). Comparison of mesospheric winds from a high- altitude meteorological analysis system and meteor radar observations during boreal winters of 2009–2010 and 2012–2013, J. Atmos. Sol. –Terr. Phys., 154, 132–166. https://doi.org/10.1016/j.jastp.2016.12.007.

Mehta, D., Gerrard, A. J., Ebihara, Y., Weatherwax, A. T., and Lanzerotti, L. J.:, (2017), Short-period mesospheric gravity waves and their sources at the South Pole, Atmos. Chem. Phys., 17, 911–919, https://doi.org/10.5194/acp-17-911-2017.

Merkel, A.W., D.W. Rusch, S.E. Palo, J.M. Russell III, & S.M. Bailey (2009), Mesospheric planetary wave activity inferred from AIM-CIPS and TIMED-SABER for the northern summer 2007 PMC season, J. Atmos. Solar-Terr. Phys., http://dx.doi.org/10.1016/j.jastp.2008.12.001.

Newnham, D. A., Clilverd, M. A., Rodger, C. J., Hendrickx, K., Megner, L., Kavanagh, A. J., et al. (2018). Observations and modeling of increased nitric oxide in the Antarctic polar middle atmosphere associated with geomagnetic storm-driven energetic electron precipitation, J. Geophys. Res. Sp. Phys., 123, 6009–6025. https://doi.org/10.1029/2018JA025507.

Newnham, D. A., C. J. Rodger, D. R. Marsh, M. E. Hervig, M. A. Clilverd, (2020). Nitric oxide distributions in the Antarctic winter time middle atmosphere during geomagnetic storms, J. Geophys. Res. Sp. Phys.
Nielsen, et al. (2010), Seasonal variation of the quasi 5-day planetary wave: Causes and consequences for polar mesospheric cloud variability in 2007, J. Geophys. Res, 115, D18111, http://dx.doi.org/10.1029/2009JD012676.

Nielsen, K., et al. (2011), On the origin of mid‐latitude mesospheric clouds: The July 2009 cloud outbreak, J. Atmos. Solar‐Terr. Phys., 73(14-15), 2118-2124, http://dx.doi.org/10.1016/j.jastp.2010.10.015.

Noël, S., Bramstedt, K., Hilker, M., Liebing, P., Plieninger, J., Reuter, M., Rozanov, A., Sioris, C. E., Bovensmann, H., and Burrows, J. P. (2016), Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements, Atmos. Meas. Tech., 9, 1485-1503, https://doi.org/10.5194/amt-9-1485-2016.

Oberheide J., et al (2020), Thermospheric Composition O/N2 Response to an Altered Meridional Mean Circulation During Sudden Stratospheric Warmings Observed by GOLD, Geophys. Res. Lett., https://doi.org/10.1029/2019GL086313.

Orsolini, Y.J., et al. (2017), Modelingq the descent of nitric oxide during the elevated stratopause event of January 2013, J. Atmos. Solar‐Terr. Phys., 155, 50-61, http://dx.doi.org/10.1016/j.jastp.2017.01.006.

O'Sullivan, D. and T.J. Dunkerton (1995), Generation of Inertia�Gravity Waves in a Simulated Life Cycle of Baroclinic Instability, J. Atmos. Sci., 52, 3695�3716,https://doi.org/10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

Palo, S. E., Forbes, J. M., Zhang, X., Russell, J. M., Mertens, C. J., Mlynczak, M. G., Burns, G. B., Espy, P. J., and Kawahara, T. D. ( 2005), Planetary wave coupling from the stratosphere to the thermosphere during the 2002 Southern Hemisphere pre‐stratwarm period, Geophys. Res. Lett., 32, L23809, http://dx.doi.org/10.1029/2005GL024298.

Pertsev, N., Dalin, P., Perminov, V. et al., (2014), Noctilucent clouds observed from the ground: sensitivity to mesospheric parameters and long-term time series, Earth Planet Sp., 66, 98, https://doi.org/10.1186/1880-5981-66-98.

Plougonven, R., and C. Snyder (2007), Inertia-gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles, J. Atmos. Sci., 64, 2502– 2520, https://doi.org/10.1175/JAS3953.1.

Preusse, P., Dörnbrack, A., Eckermann, S. D., Riese, M., Schaeler, B., Bacmeister, J. T., Broutman, D., and Grossmann, K. U., (2002), Space‐based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study, J. Geophys. Res., 107( D23), 8178, http://dx.doi.org/10.1029/2001JD000699.

Preusse, P., Eckermann, S. D., Ern, M., Oberheide, J., Picard, R. H., Roble, R. G., Riese, M., Russell, J. M., and Mlynczak, M. G. ( 2009), Global ray tracing simulations of the SABER gravity wave climatology, J. Geophys. Res., 114, D08126, http://dx.doi.org/10.1029/2008JD011214.

Randall, C. E., et al. ( 2017), New AIM/CIPS global observations of gravity waves near 50–55 km, Geophys. Res. Lett., 44, 7044– 7052, http://dx.doi.org/10.1002/2017GL073943.

Rao, V. N., P. J. Espy, R. E. Hibbins, D. C. Fritts, and A. J. Kavanagh (2015), Observational evidence of the influence of Antarctic stratospheric ozone variability on middle atmosphere dynamics, Geophys. Res. Lett., http://dx.doi.org/10.1002/2015GL065432.

Rong, P., J. M. Russell III, L. L. Gordley, M. E. Hervig, L. Deaver, P. F. Bernath, K. A. Walker (2010), Validation of v1.022 mesospheric water vapor observed by the SOFIE instrument on the Aeronomy of Ice in the Mesosphere satellite, J. Geophys. Res., 115, D24314, http://dx.doi.org/10.1029/2010JD014269.

Rong, P.P., J.M. Russell III, B.T. Marshall, D.E. Siskind, M.E. Hervig, L.L. Gordley, P.F. Bernath, & K. A. Walker (2016), Version 1.3 AIM SOFIE measured methane (CH4): Validation and seasonal climatology, J. Geophys. Res. Atmos., 121(21), http://dx.doi.org/10.1002/2016JD025415.

Rong, P. J. Yue, J. M. Russell III, D. E. Siskind, and C. E. Randall (2018), Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images, Atmos. Chem. Phys., https://doi.org/10.5194/acp-2017-733.

Russell, J. M., III, P. Rong, M. E. Hervig, D. E. Siskind, M. H. Stevens, S. M. Bailey, and J. Gumbel (2014), Analysis of northern midlatitude noctilucent cloud occurrences using satellite data and modeling, J. Geophys. Res.- Atmosphere, 119, 3238–3250, http://dx.doi.org/10.1002/2013JD021017.

Sassi, F., J.P. McCormack, & S.E. McDonald (2019), Whole Atmosphere Coupling on Intraseasonal and Interseasonal Time Scales: A Potential Source of Increased Predictive Capability, Radio Science, http://dx.doi.org/10.1029/2019RS006847.

Sato, K. S. Watanabe, Y. Kawatani, Y. Tomikawa, K. Miyazaki, M. Takahashi (2009), On the originas of mesospheric gravity waves, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL039908.

Sheese, P. E., K. Strong, E. J. Llewellyn, R. L. Gattinger, J. M. Russell III, C. D.Boone, M. E. Hervig, R. J. Sica, and J. Bandoro, (2012) Validation of OSIRIS mesospheric temperatures using satellite and ground-based measurements, Atmos. Meas. Tech. Discuss., 5, 5493-5526, http://dx.doi.org/10.5194/amtd-5-5493-2012.

Siskind, D.E., M.H. Stevens, M. Hervig, F. Sassi, K. Hoppel, C.R. Englert, & A.J. Kochenash (2011), Consequences of recent Southern Hemisphere winter variability on polar mesospheric clouds, J. Atmos. Solar-Terr. Phys., 73(13), 2013-2021, http://dx.doi.org/10.1016/j.jastp.2011.06.014.

Siskind, D.E. & J.P. McCormack (2014), Summer mesospheric warmings and the quasi 2 day wave, Geophys. Res. Lett., 41(2), http://dx.doi.org/10.1002/2013GL058875.

Siskind, D.E., D.R. Allen, C.E. Randall, V.L. Harvey, M.E. Hervig, J. Lumpe, B. Thurairajah, S.M. Bailey, J.M. Russell III (2015a), Extreme stratospheric springs and their consequences for the onset of polar mesospheric clouds, J. Atmos. Solar‐Terr. Phys., 132, 74-81, http://dx.doi.org/10.1016/j.jastp.2015.06.014.

Siskind, D.E., F. Sassi, C.E. Randall, V.L. Harvey, M.E. Hervig, & S.M. Bailey (2015b), Is a high-altitude meteorological analysis necessary to simulate thermosphere-stratosphere coupling?, Geophys. Res. Lett., 42(19), http://dx.doi.org/10.1002/2015GL065838.

Siskind, D.E., G.E. Nedoluha, F. Sassi, P. Rong, S.M. Bailey, M.E. Hervig, & C.E. Randall (2016), Persistence of upper stratospheric winter time tracer variability into the Arctic spring and summer, Atmos. Chem. Phys., 16(12), https://doi.org/10.5194/acp-16-7957-2016.

Siskind, D. E., A. W. Merkel , D. R. Marsh , C. E. Randall , M. E. Hervig , M. G. Mlynczak, J. M. Russell III (2018), Understanding the effects of polar mesospheric clouds on the environment of the upper mesosphere and lower thermosphere, J. Geophys. Res. Atmos., 123. https://doi.org/10.1029/2018JD028830.

Siskind, D.E., M. Jones Jr., D.P. Drob, J.P. McCormack, M.E. Hervig, D.R. Marsh, M.G. Mlynczak, S.M. Bailey, A. Maute, and N.J. Mitchell (2019), On the relative roles of dynamics and chemistry governing the abundance and diurnal variation of low-latitude thermospheric NO, Ann. Geophys., 37, 37-48, https://doi.org/10.5194/angeo-37-37-2019.

Siskind, D.E., et al. (2019), Modeling the descent of mesospheric air following the 2013 elevated stratopause event, SA21B-3080, presented at 2019 Fall Meeting, AGU, San Francisco, CA, 9-13 December 2019, https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/539939.

Smith, A. K., Garcia, R. R., Marsh, D. R., Kinnison, D. E., and Richter, J. H. (2010), Simulations of the response of mesospheric circulation and temperature to the Antarctic ozone hole, Geophys. Res. Lett., 37, L22803, https://doi.org/10.1029/2010GL045255.

Smith, A. K., R. R. Garcia, D. R. Marsh, and J. H. Richter (2011), WACCM simulations of the mean circulation and trace species transport in the winter mesosphere, J. Geophys. Res., 116, D20115, https://doi.org/10.1029/2011JD016083.

Smith, A. K., et al. (2013), Satellite observations of ozone in the upper mesosphere, J. Geophys. Res. Atmos., 118, 5803–5821, https://doi.org/10.1002/jgrd.50445.

Smith, A.K., P.J. Espy, M. López‐Puertas, O.V. Tweedy (2018), Spatial and temporal structure of the tertiary ozone maximum in the polar winter mesosphere, J. Geophys. Res. Atmos., 123(8), https://doi.org/10.1029/2017JD028030.

Smith‐Johnsen, C., Marsh, D. R., Orsolini, Y., Nesse Tyssøy, H., Hendrickx, K., Sandanger, M. I., et al. (2018a), Nitric oxide response to the April 2010 electron precipitation event: Using WACCM and WACCM‐D with and without medium‐energy electrons, J. Geophys. Res. Space Physics, 123, https://doi.org/10.1029/2018JA025418.

Smith-Johnsen, C., Y. Orsolini, F. Stordal, V. Limpasuvan, K. Pérot (2018b), Nighttime mesospheric ozone enhancements during the 2002 southern hemispheric major stratospheric warming, J. Atmos. Sol.-Terr. Phys., 168, pp. 100-108, https://doi.org/10.1016/j.jastp.2017.12.018.

Stevens, M. H., L. E. Deaver, M. E. Hervig, J. M. Russell III, D. E. Siskind, P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, J. Höffner, and B. T. Marshall (2012), Validation of upper mesospheric and lower thermospheric temperatures measured by the Solar Occultation for Ice Experiment, J. Geophys. Res., 117, D16304, http://dx.doi.org/10.1029/2012JD017689.

Stevens, M.H., R.S. Lieberman, D.E. Siskind, J.P. McCormack, M.E. Hervig, & C.R. Englert (2017), Periodicities of polar mesospheric clouds inferred from a meteorological analysis and forecast system, J. Geophys. Res. Atmos., 122(8), https://doi.org/10.1002/2016JD025349.

Taylor, M.J., M. Gadsden, R.PLowe, M.S. Zalcik, and J. Brausch (2002), Mesospheric cloud observations at unusually low latitudes, J. Atmos. Solar-Terr. Phys., 64, 991-999, https://doi.org/10.1016/S1364-6826(02)00053-6.

Thomas, G. E. (1996), Is the polar mesosphere the miner’s canary of global change?. Adv. Space Res., 18, 149-158, https://doi.org/10.1016/0273-1177(95)00855-9.

Thomas, G.E, B. Thurairajah, M. E. Hervig, C. von Savigny, M. Snow (2015), Solar-induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: Drivers of polar mesospheric cloud variability, J. Atmos. Sol. Terr. Phys., 134, 56-78, http://dx.doi.org/10.1016/j.jastp.2015.09.015.


Thomas, G. E., Lumpe, J., Bardeen, C., and Randall, C. E., (2019), Albedo-Ice Regression method for determining ice water content of polar mesospheric clouds using ultraviolet observations from space, Atmos. Meas. Tech., 12, 1755-1766, https://doi.org/10.5194/amt-12-1755-2019.


Thurairajah, B., S. M. Bailey, D. E. Siskind, C. E. Randall, M. J. Taylor, J. M. Russell III (2013), Case study of an ice void structure in polar mesospheric clouds, J. Atmos. Sol. Terr. Phys., 104, pp 224-233, http://dx.doi.org/10.1016/j.jastp.2013.02.001.

Thurairajah, B., S. M. Bailey, C. Y. Cullens, M. E. Hervig, and J. M. Russell III (2014), Gravity wave activity during recent stratospheric sudden warming events from SOFIE temperature measurements, J. Geophys. Res. Atmos., 119, 8091–8103, https://doi.org/10.1002/2014JD021763.

Thurairajah, B., Siskind, D. E., Bailey, S. M., Carstens, J. N., Russell, J. M., and Mlynczak, M. G. ( 2017a), Oblique propagation of monsoon gravity waves during the northern hemisphere 2007 summer, J. Geophys. Res. Atmos., 122, 5063‐ 5075, https://doi.org/10.1002/2016JD026008.

Thurairajah, B., K. Sato, J. Yue, T. Nakamura, M. Kohma, S. Bailey, and J. Russell III (2017b), Simultaneous observation of gravity waves at PMC altitude from AIM/CIPS experiment and PANSY radar over Syowa (69 S, 39 E), J. Atmos. Solar Terr. Phys., 164, 324-331, https://doi.org/10.1016/j.jastp.2017.10.006.

Thurairajah et al, (2017c), Solar induced 27-day variations of polar mesospheric clouds from AIM SOFIE and CIPS experiments, J. Atmos. Sol.-Terr. Physics, http://dx.doi.org/10.1016/j.jastp.2016.09.008.

Thurairajah, B., S. M. Bailey, M. E. Hervig, Summer mesospheric gravity wave response to solar activity from nine years of AIM observations (2019), J. Atmos. Solar. Terr. Phys., https://doi.org/10.1016/j.jastp.2019.105086.

Thurairajah, B., Cullens, C. Y., Siskind, D. E., Hervig, M. E., & Bailey, S. M. (2020), The Role of Vertically and Obliquely Propagating Gravity Waves in Influencing the Polar Summer Mesosphere, J. Geophys. Res.: Atmospheres, 125, e2020JD032495. https://doi.org/10.1029/2020JD032495.

Tschanz, B., C. Straub, D. Scheiben, K. A. Walker, G. P. Stiller, and N. Kämpfer (2013), Validation of middle-atmospheric campaign-based water vapour measured by the ground-based microwave radiometer MIAWARA-C, Atmos-Meas. Tech. 6, 1725-1745, www.atmos-meas-tech.net/6/1725/2013/.

Tweedy, O. V., et al. (2013), Nighttime secondary ozone layer during major stratospheric sudden warmings in specified‐dynamics WACCM, J. Geophys. Res. Atmos., 118, 8346– 8358, https://doi.org/10.1002/jgrd.50651.

Vadas S. L. and H. Liu (2009), The Generation of Large-Scale Gravity Waves and Neutral Winds in the Thermosphere From the Dissipation of Convectively-Generated Gravity Waves, J. Geophys. Res., 114, A10310, https://doi.org/10.1029/2009JA014108.

Vadas, S.L. and E. Becker (2018), Numerical modeling of the Excitation, propagation, and dissipation of primary and secondary gravity waves during wintertime at McMurdo Station in the Antarctic, J. Geophys. Res. Atmospheres, 123, https://doi.org/10.1029/2017JD027974.

Vadas, S.L., J. Zhao, X. Chu and E. Becker (2018), The Excitation of secondary gravity waves from local body forces: Theory and observation, J. Geophys. Res. Atmospheres, 123, https://doi.org/10.1029/2017JD027970.

Vadas, S. L., and Becker, E. (2019), Numerical modeling of the generation of tertiary gravity waves in the mesosphere and thermosphere during strong mountain wave events over the Southern Andes, J. Geophys. Res.: Space Physics, 124, 7687– 7718. https://doi.org/10.1029/2019JA026694.

Vadas, S. L., Xu, S., Yue, J., Bossert, K., Becker, E., & Baumgarten, G., (2019), Characteristics of the quiet-time hot spot gravity waves observed by GOCE over the Southern Andes on 5 July 2010, J. Geophys. Res.: Space Physics, 124, 7034� 7061. https://doi.org/10.1029/2019JA026693.

Venkat Ratnam, M., T. Tsuda, C. Jacobi, Y. Aoyama (2004), Enhancement of gravity wave activity during a major Southern Hemisphere stratospheric warming by CHAMP/GPS measurements, Geophys. Res. Lett, 31, https://doi.org/10.1029/2004GL019789.

Whiteway, J. A.T. J. Duck, D. P. Donovan, J. C. Bird, S. R. Pal and A. I. Carswell (1997), Measurements of gravity wave activity within and round the Arctic stratospheric vortex, Geophy. Res. Lett., 24, 11, 1387-1390, https://doi.org/10.1029/97GL01322.

Yiğit, E., and Medvedev, A. S. ( 2009), Heating and cooling of the thermosphere by internal gravity waves, Geophys. Res. Lett., 36, L14807, doi:10.1029/2009GL038507.

Yokoyama, T., (2017), A review on the numerical simulation of equatorial plasma bubbles toward scintillation evaluation and forecasting. Prog Earth Planet Sci, 4, 37, https://doi.org/10.1186/s40645-017-0153-6.

Yue, J., Russell, J., Jian, Y., Rezac, L., Garcia, R., López‐Puertas, M., and Mlynczak, M. G. (2015), Increasing carbon dioxide concentration in the upper atmosphere observed by SABER, Geophys. Res. Lett., 42, 7194– 7199, doi:10.1002/2015GL064696.

Zhao, Y., M. J. Taylor, P.-D. Pautet, T. Moffat-Griffin, M. E. Hervig, D. J. Murphy, W. J. R. French, H. L. Liu, W. R. Pendleton Jr., J. M. Russell III (2019), Investigating an unusually large 28-day oscillation in mesospheric temperature over Antarctica using ground-based and satellite measurements, J. Geophys. Res. Atmos., 124, 8576–8593, https://doi.org/10.1029/2019JD030286.



More @ AIM

AIM 2017 Extended Mission Proposal

 

Education Resources
Mission Summary
Media Center

More @ NASA

Science @ NASA
AIM Mission

NASA Aeronomy of Ice in the Mesosphere

More on the Web

Laboratory for Atmospheric and Space Physics, University of Colorado Aeronomy of Ice in the Mesosphere—CIPS Instrument.

Spaceweather.com
Realtime NLC Gallery

Spaceweather (2016, June 29) Climate Change at the Edge of Space

NASA Earth Observatory (2013, June 25) Early Start for Noctilucent Clouds.

NASA Earth Observatory (2011, January 27) Night-Shining Clouds Are Getting Brighter.

 

 
NASA's Sun-Earth Education Forum Logo

The AIM mission is a part of
NASA's Sun-Earth Connection Education Forum.

Responsible Official: James M. Russell III

Web Curator: Emily M. W. Hill
Emily Hill Designs